5,862 research outputs found

    The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength

    No full text
    International audienceMotivated by the strong evidence that the state of the northern hemisphere vortex in boreal winter influences tropospheric variability, teleconnection patterns over the North Atlantic are defined separately for winter episodes where the zonal wind at 50hPa and 65° N is above or below the critical velocity for vertical propagation of zonal planetary wave 1. We argue that the teleconnection structure in the middle and upper troposphere differs considerably between the two regimes of the polar vortex, while this is not the case at sea level. If the polar vortex is strong, there exists one meridional dipole structure of geopotential height in the upper and middle troposphere, which is situated in the central North Atlantic. If the polar vortex is weak, there exist two such dipoles, one over the western and one over the eastern North Atlantic. Storm tracks (and precipitation related with these) are determined by mid and upper tropospheric conditions and we find significant differences of these parameters between the stratospheric regimes. For the strong polar vortex regime, in case of a negative upper tropospheric "NAO" index we find a blocking height situation over the Northeast Atlantic and the strongest storm track of all. It is reaching far north into the Arctic Ocean and has a secondary maximum over the Denmark Strait. Such storm track is not found in composites based on a classic NAO defined by surface pressure differences between the Icelandic Low and the Azores High. Our results suggest that it is important to include the state of the polar vortex strength in any study of the variability over the North Atlantic

    The initial dispersal and radiative forcing of a Northern Hemisphere mid latitude super volcano: a Yellowstone case study

    No full text
    International audienceThe chemistry climate model MAECHAM4/CHEM with interactive and prognostic volcanic aerosol and ozone, was used to study the initial dispersal and radiative forcing of a possible Yellowstone super eruption. Tropospheric climate anomalies are not analysed since sea surface temperatures are kept fix. Our experiments show that the global dispersal of a Yellowstone super eruption is strongly dependent on the season of the eruption. In Northern Hemisphere summer the volcanic cloud is transported westward and preferentially southward, while in Northern Hemisphere winter the cloud is transported eastward and more northward compared to the summer case. Aerosol induced heating leads to a more global spreading with a pronounced cross equatorial transport. For a summer eruption aerosol is transported much further to the Southern Hemisphere than for a winter eruption. In contrast to Pinatubo case studies, strong cooling tendencies appear with maximum values of ?1.6 K/day three months after the eruption in the upper tropical stratosphere. This strong cooling effect weakens with decreasing aerosol density over time and initially prevents the aerosol laden air from further active rising. All-sky net radiative flux changes of more than 32 W/m2 at the surface are about a factor of 6 larger than for the Pinatubo eruption. Large positive flux anomalies of more than 16 W/m2 are found in the first months in the tropics and sub tropics. These strong forcings call for a fully coupled ocean/atmosphere/chemistry model to study climate sensitivity

    Evaluation of a new convective cloud field model: precipitation over the maritime continent

    No full text
    International audienceA convective cloud field model (CCFM) is substituted for a standard mass flux parameterisation of convective clouds in a limited area atmospheric model (REMO) and is tested for a whole annual cycle (July 1997 to June 1998) over the West Pacific Maritime Continent. REMO with CCFM is run in 0.5-degree resolution and the model at the lateral boundaries is forced 6-hourly by ECMWF reanalysis data. Simulated precipitation from runs with the standard convection parameterisation and with CCFM is compared against two sets of observations. The use of CCFM clearly improves the simulated precipitation patterns and total rainfall over the whole model domain. The distribution between large-scale and convective precipitation becomes more realistic. CCFM shows to be a useful concept to describe convective cloud spectra in atmospheric models, although there are still similar problems with occasionally extreme precipitation as in the original set-up of REMO

    An emission inventory of sulfur from anthropogenic sources in Antarctica

    Get PDF
    This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft) in Antarctica, covering the 2004–2005 period. <br><br> The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica. <br><br> Depending on the type of operation, emission rates of SO<sub>2</sub>, and BC (Black Carbon, from shipping only) have been calculated using the above technique. However, only results of SO<sub>2</sub> emissions from each source are presented here. Emission inventory maps of SO<sub>2</sub> depicting the track/path taken by each mobile source are shown. The total annual SO<sub>2</sub> is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong

    Atmospheric transport and deposition of Indonesian volcanic emissions

    Get PDF
    International audienceA regional climate model has been used to study the transport and deposition of sulfur (SO2 and SO42-) and PbCl2 emissions from Indonesian volcanoes. The sensitivity of the atmospheric loss of these trace species to meteorological conditions and their solubility was examined. Two experiments were conducted: 1) volcanic sulfur released as primarily SO2 and subject to transport, deposition, and oxidation to SO42-; and 2) PbCl2 released as an infinitely soluble passive tracer subject to only transport and deposition. The first experiment was used to calculate SO2 loss rates from each active Indonesian volcano producing an annual mean loss rate for all volcanoes of 1.1Ă—10-5 s-1, or an e-folding rate of approximately 1 day. SO2 loss rate was found to vary seasonally, be poorly correlated with wind speed, and uncorrelated with temperature or relative humidity. The variability of SO2 loss rates is found to be correlated with the variability of wind speeds, suggesting that it is much more difficult to establish a "typical'' SO2 loss rate for volcanoes that are exposed to changeable winds. Within an average distance of 70 km away from the active Indonesian volcanoes, 53% of SO2 loss is due to conversion to SO42-, 42% due to dry deposition, and 5% due to lateral transport away from the dominant direction of plume travel. The solubility of volcanic emissions in water is shown to influence their atmospheric transport and deposition. High concentrations of PbCl2 are predicted to be deposited near to the volcanoes while volcanic S travels further away until removal from the atmosphere primarily via the wet deposition of H2SO4. The ratio of the concentration of PbCl2 to SO2 is found to exponentially decay at increasing distance from the volcanoes. The more rapid removal of highly soluble species should be considered when observing SO2 in an aged plume and relating this concentration to other volcanic species. An assumption that the ratio between the concentrations of highly soluble volcanic compounds and SO2 within a plume is equal to that observed in fumarolic gases is reasonable at small distances from the volcanic vent, but will result in an underestimation of the emission flux of highly soluble species

    Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia

    Get PDF
    In 1997/1998 a severe smoke episode due to extensive biomass burning, especially of peat, was observed over Indonesia. September 1997 was the month with the highest aerosol burden. This month was simulated using the limited area model REMOTE driven at its lateral boundaries by ERA40 reanalysis data. REMOTE was extended by a new convective cloud parameterization mimicking individual clouds competing for instability energy. This allows for the interaction of aerosols, convective clouds and precipitation. Results show that in the monthly mean convective precipitation is diminished at nearly all places with high aerosol loading, but at some areas with high background humidity precipitation from large-scale clouds may over-compensate the loss in convective rainfall. The simulations revealed that both large-scale and convective clouds' microphysics are influenced by aerosols. Since aerosols are washed and rained out by rainfall, high aerosol concentrations can only persist at low rainfall rates. Hence, aerosol concentrations are not independent of the rainfall amount and in the mean the maximum absolute effects on rainfall from large scale clouds are found at intermediate aerosol concentrations. The reason for this behavior is that at high aerosol concentrations rainfall rates are small and consequently also the anomalies are small. For large-scale as well as for convective rain negative and positive anomalies are found for all aerosol concentrations. Negative anomalies dominate and are highly statistically significant especially for convective rainfall since part of the precipitation loss from large-scale clouds is compensated by moisture detrained from the convective clouds. The mean precipitation from large-scale clouds is less reduced (however still statistically significant) than rain from convective clouds. This effect is due to detrainment of cloud water from the less strongly raining convective clouds and because of the generally lower absolute amounts of rainfall from large-scale clouds. With increasing aerosol load both, convective and large scale clouds produce less rain. At very few individual time steps cases were found when polluted convective clouds produced intensified rainfall via mixed phase microphysics. However, these cases are not unequivocal and opposite results were also simulated, indicating that other than aerosol-microphysics effects have important impact on the results. Overall, the introduction of the new cumulus parameterization and aerosol-cloud interaction reduced some of the original REMOTE biases of precipitation patterns and total amount
    • …
    corecore